PhilosophyDay
Современная философия
Экзистенциальные сужденияДругая философия / Экзистенциальные сужденияСтраница 4
Чтобы построить в E-структуре множество возможных экзистенциальных (частных) суждений, достаточно вычислить верхние конусы всех минимальных элементов.
Используя для этого граф на рисунке 31, получим
МD = {М,



Тогда экзистенциальные суждения данной структуры формируются в следующей последовательности:
выбирается любой верхний конус (например, {Р, Ж, });
из выбранного на шаге 1 множества литералов формируется некоторое его подмножество (например, {Ж, });
формируется экзистенциальное суждение, в правой части которого содержится выбранное на предыдущем шаге подмножество литералов.
В нашем примере таким экзистенциальным суждением будет, в частности,
W®( Ж, ),
которое при переводе на естественный язык ("Некоторые, дышащие жабрами, не являются млекопитающими") совпадает с заключением, полученным по правилам Аристотелевой силлогистики.
Верхние конусы минимальных элементов называются максимальными верхними конусами данной E-структуры. Максимальными они являются потому, что верхний конус любого элемента, не являющегося минимальным, обязательно является подмножеством какого-либо максимального верхнего конуса.
Рассмотренный метод построения экзистенциальных суждений с помощью максимальных верхних конусов, позволяет вывести все правильные силлогизмы, содержащие в качестве заключений частные суждения, а также построить такие частные заключения, которые не предусмотрены в силлогистике Аристотеля. Эти частные суждения обладают тем свойством, что они при добавлении в структуру не вызывают коллизий не только в исходной структуре, но и в структуре, которая получается из исходной за счет добавления в нее новых суждений или терминов. При этом, разумеется, должно выполняться условие: при расширении структура должна оставаться корректной. Поэтому частные суждения, полученные этим методом (с помощью максимальных верхних конусов), мы будем называть безусловными экзистенциальными суждениями (в прежних работах на эту тему такие суждения назывались Аристотелевыми частными суждениями).
Свойство безусловных экзистенциальных суждений сохранять свою корректность при любом корректном расширении структуры обусловлено следующей закономерностью: при любом корректном расширении исходной структуры верхние конусы всех элементов исходной структуры являются подмножествами верхних конусов тех же элементов в расширенной структуре.
Эта закономерность может быть строго доказана, но здесь мы это доказательство не будем рассматривать.
Но, оказывается, имеется другой метод построения корректных экзистенциальных суждений и соответственно другой класс экзистенциальных суждений. Предположим, что мы выбираем литералы для правой части экзистенциального суждения, но при этом потребуем выполнения только одного условия: это суждение в данной структуре должно быть корректным. Тогда появляется возможность построить такие корректные экзистенциальные суждения, у которых в правой части множество литералов не является подмножеством литералов какого-либо максимального верхнего конуса структуры. Чтобы такой выбор не производился вслепую, можно воспользоваться следующей теоремой. Предположим, что в структуре выбрано некоторое множество литералов M = {L1, L2, . Lk}, при этом условие, что M включено в один из максимальных верхних конусов структуры, не обязательно. Тогда справедлива следующая теорема.
Смотрите также
10.5 Ревизионная
теория истины
Ревизионная
теория истины[505] призвана анализировать
парадоксы типа парадокса лжеца (или парадокса Эпименида), которые показывают,
что полагания здравого смысла относительно истины могут ...
13. Аналитическая
философия сознания
Философский
интерес к сознанию исторически был обусловлен не только важностью этого понятия
для понимания рациональности и разумности, но еще и тем, что существование
сознания бросало сам ...
Николай Бердяев. Смысл творчества (опыт оправдания человека)
Введение
Дух человеческий – в плену. Плен этот я называю
"миром", мировой данностью, необходимостью. "Мир сей" не
есть космос, он есть некосмическое состояни ...